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C Proofs for Section 2

C.1 Proof of Theorem 1

For each student s let B (s,p) = {c|r; > p§ for some b}. It suffices to show that
for each student s it holds that pgrre (s) € B (s, p), and that if ¢ € B (s, p) then s
prefers parre (s) to ¢, i.e. parre (s) =° ¢. The former is simple to show, since if we
let b be the school such that s traded a seat at school b for a seat at school pgrre (s),
then by definition psdTTC(S) <rj and parre (s) € B (s, p).

Now suppose for the sake of contradiction that ¢ € B (s, p) and student s strictly
prefers ¢ to parre (8), i.e. ¢ =* parre (s). As ¢ € B (s, p) there exists a school & such
that 7§ > pf,. Let s’ be the student with rank 7§, = pf, at school &'. (Such a student
exists since p§, < rj < 1.) Then by definition student s’ traded a seat at school ¥/,
so since 5, > p§ = ry student s is assigned weakly before student s’. Additionally,
since ¢ =° pgrre (s) school ¢ must reach capacity before student s is assigned, and
so since student s’ was assigned to school ¢ student s was assigned strictly before

student s. This provides the required contradiction.

C.2 Proof of Proposition 1

Let the schools be indexed such that they reach capacity in the order 1,2,...,|C|. If
a student s was assigned (strictly) after school ¢ — 1 reached capacity and (weakly)
before school ¢ reached capacity, we say that the student s was assigned in round /.

Given TTC cutoffs p§ from Theorem 1, we define new cutoffs {p§} by setting
P¢ = ming<.p{. It evidently holds that pj > pz > -+ > ph =pyt' = -+ = pp for all
b. We show that the cutoffs {pj} give the same allocation as the cutoffs {pj}, i.e. for
each student s it holds that

max {c | r; > p; for some b} = pgrrce(s) = max{c | r; > p; for some b} .
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For each student s let B (s,p) = {c|r; > p for some b}. It suffices to show that
for each student s it holds that pgrre (s) € B (s,p), and that if ¢ € B (s,p) then
s prefers pgrre (s) to ¢, ie. p(s) =° ¢. The former is simple to show, since clearly
p <pandso B(s,p) 2 B(s,p) > parrc (s) (by Theorem 1).

The rest of the proof can be completed in much the same way as the proof of
Theorem 1. Suppose for the sake of contradiction that ¢ € B (s,p) and student s
strictly prefers ¢ to parrc (s), ie. ¢ =° parrc (s). As ¢ € B(s,p) there exists a
school ' such that 7§ > p§,. Let s’ be the student with rank r§ = pf, at school b'.
(Such a student exists since pj, < rj, < 1.) Then by definition student s’ traded a
seat at school V', so since rj, > pj, = r;j,/ student s is assigned weakly before student
s’. Additionally, since ¢ >* pgrre ($) school ¢ must reach capacity before student s
is assigned. Finally, by definition there exists some ¢’ < ¢ such that pj, = p‘g; and
student s’ was assigned to school ¢/, and so student s was assigned weakly before
school ¢ reached capacity, and hence strictly before student s. This provides the
required contradiction.

The statements about the structure of the set of schools By (s, p) student s can
afford via her priority at school b and the structure of the budget set B (s,p) =
Up By (s, p) follow immediately from the ordered cutoffs.

D Proofs for Section 3

D.1 Definitions and Notation

We begin with some additional definitions and notation that will be used in the proofs
in this section.

In Appendix A.1 we outlined how the TTC path v can be interpreted as tracking
the progression of the algorithm. Throughout the proofs, we make use of this inter-
pretation and will frequently fix an economy £3° and a TTC path v and let TTC (v|€)
denote the continuous-time algorithm given by the path + on the economy £.3¢ Given
a path v, let {t(c) }Ce . be stopping times such that v and {t(c) }ce c satisfy the capacity
equations. Let the schools be labeled such that tlen) < gle2) < oo < tlen)and let

35The economy &£ can either be a continuum economy, or a discrete economy E, in which case we
let TTC (v|E) denote TTC (y|® (E)).
36We will omit the dependence on the economy when it is evident from context.



t(©0) = 0. We will refer to the progression of the algorithm from time ¢(%-1) to time
tce) as Round ¢ of TTC(v).

Let z,7T be vectors. We let (z,7] = { : © £ x and x < T} denote the set of
vectors that are weakly smaller than = along every coordinate, and strictly larger
than z along some coordinate. Let K C C be a set of schools. For all vectors x, we
let 7 (x) denote the projection of x to the coordinates indexed by schools in K.

The following notation is used to incorporate information about the set of available
schools. For an economy E and TTC path v yielding TTC cutoffs p we let C'(z) =
{c|3bs.t. py <z} denote the set of schools available to students with rank z. We
denote by

¢ ={0e0|Ch’ (C) =c}

c|C

the set of students whose top choice in C' is ¢, and denote by n°“ the measure of

these students. That is, for S C ©, let % (S) := (SN O°). In an abuse of
notation, for a set A C [0, 1], we will often let  (A) denote 7 ({6 €017 € A}), the
measure of students with ranks in A, and let 79“ (4) denote n ({6 € 4 |rf € A}),
the measure of students with ranks in A whose top choice school in C'is c.

We will also find it convenient to define sets of students who were offered or
assigned a seat along some TTC path +. These will be useful in considering the

result of aggregating the marginal trade balance equations. For each time 7 let
To(im) 2 {0€0 |37 <7st 1! =7.() and ¥ < (7))}
denote the set of students who were offered a seat by school ¢ before time 7, let
T¢(v;7) = {0 €0 |1’ £~(r)and CH® (C (r’)) = ¢}

denote the set of students who were assigned a seat at school ¢ before time 7, and let
T (5 7) et {6 € ©|r? £ ~(r) and Ch? (C) = ¢} denote the set of students who
would be assigned a seat at school ¢ before time 7 if the set of available schools was
C and the path followed was .37

For each interval T' = [t,t] let T (v;T) “r () \ Ust Tz (73 t) be the set of

students who were offered a seat by school ¢ at some time 7 € T', and let TC|C(T; v) =

3TNote that 7. (v;7) and T¢(vy;7) include students who were offered or assigned a seat in the
school in previous rounds.



Figure 15: The sets T. (v;t) and T€ (y;t) for an economy with two schools and a fived path v and
timet. T. (7;t) denotes the set of students who were offered a seat by school ¢ by time t, and T€ (y;t)
denotes the set of students who were assigned to school ¢ by time t. Students in each set are shaded
in grey. Note that students are no longer offered seats once they are assigned, and so only students
with priorities on the path v are offered seats by both schools.

T (v;8) \ T (7; ) be the set of students who were assigned to a school ¢ at some
time 7 € T, given that the set of available schools was C (v (7)) = C for each 7 € T..
For each union of disjoint intervals T' = U, T, similar define 7. (v;T) = UnTe (7 Th)
and TC(T; ) = U, T€C (T,,; ). Figure 15 illustrates examples of T, and T for an
economy with two schools.

Finally let us set up the definitions for solving the marginal trade balance equa-

tions. For a set of schools C' and individual schools b, ¢ € C| recall that

H; (2) = lim %n ({60 |1 (2 —2)- @) and O (C) = ¢})

—lim 2y ({0 € 09 |7 € [(my—2) - ¢, 2)})

e—0 &

is the marginal density of students pointed to by school b at the point x whose top

choice school in C'is c.
Let HE () be the |C] x |C| matrix with (b, ¢)th entry H (), , = HE' (z). Let



HC () be the |C] x |C| matrix with (b, ¢)th entry
~ 1 v
c — —gdc _ Ze

where v, = ) dec HiC (x) is the row sum of H (x), and the normalization 7 satisfies
T > max.v,. HC (z) is a transformation of HC (z) that will be convenient for for-
malizing the connection with continuous time Markov chains presented in Appendix
A3

Recall that a TTC path v satisfies the trade balance equations for an economy
E = (C,0,n,q) if the following holds:

Z’Y; (t) H Z’yc HS (y(t)) Ve € C, times t.

aeC aeC

These may be equivalently stated in terms of the matrix H (v (t)) as follows:

Let v (r) = 2. If d = —+' (1) > 0 solves the trade balance equations for = with

available schools C'

Zd - HAC (& Zd - HC () Ve e C,

aeC aeC

or equivalently
d=d- H (z)

we say that d is a wvalid gradient at x with available schools C, and if in addition
d-1 = —1 then we say that d is a valid direction at x with available schools C'. We
omit the references to x and C when they are clear from context.

Let M¢ (x) be the Markov chain with state space C, and transition probability
from state b to state c equal to HC (). We remark that such a Markov chain exists,
since HY (z) is a (right) stochastic matrix for each pair C, .

We will also need the following definitions. For a matrix H and sets of indices
I, J we let Hr j denote the submatrix of H with rows indexed by elements of I and
columns indexed by elements of J. Recall that, by Assumption 1, the measure 7 is

defined by a probability density v that is right-continuous and piecewise Lipschitz



continuous with points of discontinuity on a finite grid. Let the finite grid be the set
of points {z | z; € D;Vi}, where the D; are finite subsets of [0, 1]. Then there exists a
partition R of [0, 1]C into hyperrectangles such that for each R € R and each face of
R, there exists an index i and y; € D; such that the face is contained in {x | z; = y;}.

The following notion of continuity will be useful, given this grid-partition. We say
that a multivariate function f : R™ — R s right-continuous if f (x) = limy_,, y>. f (v),
where x,y are vectors in R™ and the inequalities hold coordinate-wise. For an m x n

matrix A, let 1 (A) be the m X n matrix with entries

1 if Ay #0,

We will want some way of comparing two TTC paths « and 7 obtained under two

continuum economies differing only in their measures n and 7.

Definition 3. Let v and 5 be increasing continuous functions from [0,1] to [0, 1]

with v (0) =4 (0). We say that v (1) is dominated by ¥ (T) via school c if

fYC (T) = :Yc (7—) ) and
Ww(T) < A(r) forallbelC.

We also say that « is dominated by 4 via school ¢ at time 7. If v and ' are TTC
paths, we can interpret this as school ¢ being less demanded under 7, since with the
same rank at ¢, in v students are competitive with fewer ranks at other schools b.
Equivalently, the same rank at c is less valuable under ~ than under 7, as it provides
the same opportunities for assignment as lower ranks at other schools (i.e. worse
opportunities) under v compared to 4. Another interpretation is that more students
have been offered seats by the time ¢ at which we reach students with a given c-rank
under v than under 4. A third interpretation is that fewer students are offered /

trade away seats at school ¢ at time ¢ under v than under 7.

D.2 Basic Lemmas

We will also make use of the following lemmas.



Lemma 2. Let & = (C,0,7,q) be a continuum economy such that H (z) is irreducible

for all x and C. Then there exists a unique valid TTC path . Within each round

v (+) is given by
dy (1)

——==d(y(t
D —a0)
where d (z) is the unique valid direction from x = ~ (t) that satisfies d (x) = d (z) H (z).
Moreover, if we let A (z) be obtained from H (x) — I by replacing the nth column

with the all ones vector 1, then

Proof. Tt suffices to show that d(-) is unique. The existence and uniqueness of 7 (-)
satisfying dz—y) = d (v (t)) follows by invoking Picard-Lindel6f as in the proof of
Theorem 2.

Consider the equations,

d(x) H (z) =d(x)
d(z)-1 =-1.
When H (z) is irreducible, every choice of n — 1 columns of H (z) — I gives an
independent set whose span does not contain 1. Therefore if we let A (z) be given
by replacing the nth column in H (z) — I with 1, then A (z) has full rank, and the

above equations are equivalent to

d(z)A(z)=1[0,0,...,0,—1],
ie. d(z)=10,0,...,0,—1] A(z)"".

Hence d () is unique for each z, and hence ~ (+) is uniquely determined. O

We now show that any two non-increasing continuous paths 7, ¥ starting and
ending at the same point can be re-parametrized so that for all ¢ there exists a school
¢ (7) such that v is dominated by 4 via school ¢ (7) at time ¢t. We first show that, if
v (0) < 4(0), then there exists a re-parametrization of v such that 7 is dominated

by ¥ on some interval starting at 0.

Lemma 3. Suppose 7y, 4 are a pair of non-increasing functions [0,1] — [0, 1]C such

that v (0) < 4(0). Then there exist coordinates c,b, a time t and an increasing

7



function g : R — R such that v, (g (1)) = (¢), and for all T € [0,%] it holds that

e (9(7)) = e (1) and (g (7)) <7 (7).

That is, if we renormalize the time parameter 7 of v (7) so that 7 and 7 agree
along the cth coordinate, then « is dominated by 7 via school ¢ at all times 7 € [O, ﬂ ,

and is also dominated via school b at time t.

Proof. The idea is that if we take the smallest function g such that there exists a
coordinate ¢ such that for all 7 sufficiently small 7. (g (7)) = 7. (7), then v (g (7)) <
7 (7) for all 7 sufficiently small. The lemma then follows from continuity. We make
this precise.

Fix a coordinate c. Let ¢(® be the renormalization of v so that v and 7 agree
along the cth coordinate, i.e. 7, (g(c) ( )) =3 (1) for all 7.

For all 7, we define the set /i( = {b|7 (9" (7)) > (7)} of schools b along
which the ~ curve renormalized along Coordlnate c has larger b-value at time 7 than 7,
has at time 7, and similarly define the set £ (1) = {b|v, (¢ (7)) = 75 (7) } Where
the renormalized v curve is equal to 7. It suﬂices to show that there exists b, ¢ and
a time 7 such that £ (1) = @ for all 7 € [0,7] and b € k19 (7).

Since v and 7 are continuous, there exists some maximal 79 > 0 such that the

functions £ (:) and £ () are constant over the interval (O,E(C)) If there exists ¢

such that /i(;) (1) =0for all T € <O E(C)) then by continuity there exists some time

t < 79 and school b such that b € kO (1 ( ) and we are done. Hence we may assume

that for all ¢ it holds that £ (7) = C' for all 7 € <0 t > for some fixed non-empty

set C(;). We will show that this leads to a contradiction.

We first claim that if b € C, then g® (1) > ¢! (7) for all 7 € (0,7). This is
because 7 is non-increasing and 7, (¢ (7)) = % (1) < 1 (¢'? (7)) for all T € (0,),
where the equality follows from the definition of ¢ and the inequality since b € C°)
But this Completes the proof, since it implies that for all ¢ there exists b such that
g® (1) > ¢! (1) for all T € (0,f), which is impossible since there are a finite number
of schools ¢ € C. ]

We are now ready to show that there exists a re-parametrization of v such that

v always is dominated by 4 via some school.



Lemma 4. Suppose t > 0 and v, 7 are a pair of non-increasing functions [O,ﬂ —
[0,1° such that v (0) < 7 (0) = 1 with equality on at least one coordinate, and
0 =7(1) < 7(1) with equality on at least one coordinate. Then there exists an
increasing function g : [O,ﬂ — R such that for all 7 > 0, there ezists a school ¢ (T)
such that vy (g (7)) is dominated by 7 (1) via school ¢ (7).

Proof. Without loss of generality let us assume that ¢ = 1. Fix a coordinate c. We de-
fine ¢ to be the renormalization of 7 so that v and 7 agree along the cth coordinate.
Formally, let ¢ = min {7 |y, (0) > 7. (1)} and define ¢'°) so that 7. (¢ (7)) = 7. (1)
forall 7 € [t9,1]. Let A be the set of times 7 such that v (¢ (7)) is dominated by
4 (7). The idea is to pick g to be equal to ¢© in A©. In order to do this formally, we
need to show that the sets A cover [0, 1], and then turn (a suitable subset of ) A
into a union of disjoint closed intervals, on each of which we can define g(-) =¢© (-).

We first show that U.A) = [0,1]. Suppose not, so there exists some time 7 such
that forallc € X % {¢ : 7 > t()} there exists bsuch that v, (¢ (7)) > 4, (7). Note
that for such b, ¢, since 7, is non-increasing this implies that v, (0) > 7, (7), and so the
function ¢ (-) is defined at 7, i.e. there exists ¢ () such that 5, (1) = v (¢ (7)).
In other words, since 7 is non-increasing, for all ¢ € X there exists b such that
g9 (1) < ¢g® (1), and since 7, (0) > 7, (7) it also holds that b € X. This is a
contradiction since X is finite but non-empty (since v(0) < 4 (0) = 1, with equality
on at least one coordinate).

We now turn (a suitable subset of A(®)) into a union of disjoint closed intervals.
By continuity, A is closed. Consider the closure of the interior of A(®), which we
denote by B, Since the interior of A(© is open, it is a countable union of open
intervals, and hence B(® is a countable union of disjoint closed intervals. To show
that U.ec B9 = [0,1], fix a time 7 € [0,1]. As U.A© = [0,1], there exists ¢ such
that v (¢! (7)) < (7). Hence we may invoke Lemma 3 to show that there exists
some school b, time 7 > 7 and an increasing function g such that ~, (g (g(c) (7' ))) =
Y (') and v (g9 (¢'9 (7)) < 7 (') for all 7 € [r,7]. But by the definition of ¢ (-)
this means that v, (g (¢ (7)) = 3 (7') = % (¢ (7)) for all 7 € [r,7], and so
g0g© = ¢g® and we have shown that [r,7] € B®. Hence we may write [0, 1] = U, T},
as a countable union of closed intervals T,, such that any pair of intervals intersects
at most at their endpoints, and each interval T}, is a subset of B for some ¢. For
each T}, fix some ¢(n) = ¢ so that T}, C B(®). Intuitively, this means that at any time
T € T, it holds that v (¢“") (7)) is dominated by 7 (7) via school ¢ (n).

9



We now construct a function g that satisfies the required properties as follows.
If 7 €T, C BY let g(1) = g (r). Now g is well-defined despite the possibility
that T, N T,, # (). This is because if 7 is in two different intervals T,,,T,,, then
Yem) (9 (7)) = Fe) (T) = Ve (9™ (7)) (by domination via ¢ (n) and ¢ (m)
respectively), and Yeon) (¢ (7)) = Yem) (T) = Yem) (¢ (7)) (by domination
via ¢ (m) and c(n) respectively), and so g™ (1) < gt (1) < ¢ (1) and we
can pick one value for g that satisfies all required properties. Now by definition
v (g (7)) is dominated by 74 () via school ¢(7) = ¢(n), and moreover g is defined on
all of [0,1] since U.ee B = [0,1]. This completes the proof. ]

Lemma 5. Let C' C C be a set of schools, and let D be a region on which HC (x)
is irreducible for all x € D. For each x let A(x) be given by replacing the nth
column of HC (z) — Ic with the all ones vector 1.3  Then the function f(z) =

[0,0,...,0,—1] A (x)_l is piecewise Lipschitz continuous in x.

Proof. 1t suffices to show that the function which, for each z, outputs the matrix
A(x)™" is piecewise Lipschitz continuous in z.

Now

H;lc () = lim1 v(0)do,
20 € Jo.r0>0 r0 %2y +eep, c-0C

where v (+) is bounded below on its support and piecewise Lipschitz continuous, and
the points of discontinuity lie on the grid. Hence H, © (x) is Lipschitz continuous in
x for all b, ¢, and ), qie (z) nonzero and hence bounded below, and so H (T)p.e
is bounded above and piecewise Lipschitz continuous in z, and therefore so is A (z).
Finally, since H¢ (x) is an irreducible row stochastic matrix for each x € D, it follows
that A (z) is full rank and continuous. This is because when HC (z) is irreducible
every choice of n—1 columns of HC (x)—I¢ gives an independent set whose span does
not contain the all ones vector 1¢. Therefore if we let A (z) be given by replacing
the nth column in HC (z) — I with 1¢, then A (z) has full rank.

Since A () is full rank and continuous, in each piece det (A (x)) is bounded away

from 0, and so A (:1:)_1 is piecewise Lipschitz continuous, as required. O

38]¢ is the identity matrix with rows and columns indexed by the elements in C.
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D.3 Connection to Continuous Time Markov Chains

In this section, we formalize the intuition from Appendix A.3. In Appendix A.3, we
appealed to a connection with Markov chain theory to provide a method for solving
for all the possible values of d(z). Specifically, we constructed a continuous time
Markov chain with state space C and transition rates from state b to ¢ equal to
H{ (x). We argued that if K () is the set of recurrent communication classes of this
Markov chain, then the set of valid directions d (x) is identical to the set of convex

combinations of {dK } Kek(x where d¥ is the unique solution to the trade balance

equations (2) restricted to Ié . We present the relevant definitions, results and proofs
here in full.

Let us first present some definitions from Markov chain theory.?® A square matrix
P is a right-stochastic matriz if all the entries are non-negative and each row sums to
1. A probability vector is a vector with non-negative entries that add up to 1. Given a
right-stochastic matrix P, the Markov chain with transition matriz P is the Markov
chain with state space equal to the column/row indices of P, and a probability P;; of
moving to state j in one time step, given that we start in state 7. Given two states i, j
of a Markov chain with transition matrix P, we say that states ¢ and j communicate
if there is a positive probability of moving to state ¢ to state j in finite time, and vice
versa.

For each Markov chain, there exists a unique decomposition of the state space
into a sequence of disjoint subsets C7, (s, ... such that for all 7,7, states ¢ and j
communicate if and only if they are in the same subset C} for some k. Each subset
C}, is called a communication class of the Markov chain. A Markov chain is irreducible
if it only has one communication class. A state i is recurrent if, starting at i and
following the transition matrix P, the probability of returning to state 7 is 1. A
communication class is recurrent if it contains a recurrent state.

The following proposition gives a characterization of the stationary distributions
of a Markov chain. We refer the reader to any standard stochastic processes textbook
(e.g. Karlin & Taylor (1975)) for a proof of this result.

Proposition 10. Suppose that P s the transition matriz of a Markov chain. Let
IC be the set of recurrent communication classes of the Markov chain with transition

matriz P. Then for each recurrent communication class K € IC, the equation m = 7P

39Gee standard texts such as Karlin & Taylor (1975) for a more complete treatment.
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has a unique solution 7% such that ||7%|| = 1 and supp (7TK) C K. Moreover, the
support of ™ is equal to K. In addition, if ||7|| = 1 and 7 is a solution to the

equation ™ = P, then 7 is a convex combination of the vectors in {WK}KE]C.

To make use of this proposition, define at each point x and for each set of schools C'
a Markov chain M¢ () with transition matrix H¢ (). Note that this is equivalent to
taking the embedded discrete-time Markov chain of a continuous-time Markov chain
with transition rates H{' (z) for b # ¢, and transition rates HJ® (z) = v (where
U > maXeec <Zd€0 aie (a:)) is the normalization term used to construct HC (z)).
We will relate the valid directions d(x) to the recurrent communication classes of
M€ (z), where C is the set of available schools. We will need the following notation
and definitions. Given a vector v indexed by C, a matrix () with rows and columns
indexed by C and subsets K, K/ C C of the indices, we let vg denote the restriction
of v to the coordinates in K, and we let Qi i+ denote the restriction of () to rows
indexed by K and columns indexed by K'.

The following lemma characterizes the recurrent communication classes of the
Markov chain MY (z) using the properties of the matrix HC (z), and can be found

in any standard stochastic processes text.

Lemma 6. Let C be the set of available school at a point x. Then a set K C C is a
recurrent communication class of the Markov chain M (z) if and only if HC (T) g i

is irreducible and HC (z) Ko\ 18 the zero matriz.

It is easy to see that the same result holds when we replace H¢ by HC.
The following lemma allows us to characterize the valid directions d in terms of
the matrix H (z).

Lemma 7. The vector d is a valid direction at x with available schools c if and only
of
d-1=—-1andd=d-HC (z).

Proof. Tt suffices to show that d = d- H® (z) if and only if

> do - HIC(x) =) d.- H (x) Ve e C.

acC aeC
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Now

d=d- H (z)

Sde = d, HJ(z) Vee C

acC
edo=Y d,- ( HC ( )+1ac(1—¥)) VeeC

acC v
&d, - ”"_Zd ( HEI ( )) Vee C

acC
ed.- Y HI(x) =) d,- HI (z) Vee C
aceC aeC
which concludes the proof. O

Proposition 10 and Lemmas 7 and 6 allow us to characterize the valid directions
d(z).

Theorem 4. Let C be the set of available schools, and let K (x) be the set of subsets
K C C for which HC (2) g g 18 irreducible and HC (I)KC\K is the zero matriz. Then
for each K € K (z) the equation d = d- HC (x) has a unique solution d that satisfies
d¥-1=—1 and supp (dK) C K, and its projection onto its support K has the form

(@), =10,0,...,0,—1] A% (z) ",

where AS (x) is the matriz obtained by replacing the (| K| — 1)th column of HC (T) g —
I with the all ones vector 1.
Moreover, if d-1 = —1 and d is a solution to the equation d = d - HC (x), then

d is a convexr combination of the vectors in {dK}Ke;C(Z).

Proof. Proposition 6 shows that the sets K are precisely the recurrent sets of the
Markov chain with transition matrix H (z). Hence uniqueness of the d and the fact
that d is a convex combination of d¥ follow directly from Proposition 10. The form

of the solution d¥ follows from Lemma 2. O

This has the following interpretation. Suppose that there is a unique recurrent
communication class K, such as when 7 has full support. Then there is a unique
infinitesimal continuum trading cycle of students, specified by the unique valid di-

rection d satisfying d = d - H (). Moreover, students in the cycle trade seats from

13



every school in K. Any school not in K is blocked from participating, since there
is not enough demand to fill the seats they are offering. When there are multiple
recurrent communication classes, each of the d”* gives a unique infinitesimal trading
cycle of students, corresponding to those who trade seats in K. Moreover, these
trading cycles are disjoint. Hence the only multiplicity that remains is to decide the
order, or the relative rate, at which to clear these cycles. We will show in Appendix
D.4 that, as in the discrete setting, the order in which cycles are cleared does not

affect the final allocation.

D.4 Proof of Theorem 2

We first show that there exist solutions p, 7, t to the marginal trade balance equations
and capacity equations. The proof relies on selecting appropriate valid directions
d (z) and then invoking the Picard-Lindeldf theorem to show existence.

Specifically, let C' be the set of available schools, fix a point x, and consider
the set of vectors d such that d - HC (x) = d. Then it follows from Theorem 4
that if d(x) is the valid direction from x with minimal support under the shortlex
order, then d(z) = d®@ for the element K (z) € K () that is the smallest under
the shortlex ordering.*® As the density v () defining 7 (-) is Lipschitz continuous, it
follows that IC(-) and K (-) are piecewise constant. Hence we may invoke Lemma
5 and the form of d(-) as given in Lemma 2 to conclude that d(-) is piecewise
Lipschitz within each piece, and hence piecewize Lipschitz in [0,1]°. Since d(-) is
piecewise Lipschitz, it follows from the Picard-Lindelof theorem that there exists a
unique function v (-) satisfying dzl—gt) =d (v (t)). It follows trivially that v satisfies the
marginal trade balance equations, and since we have assumed that all students find
all schools acceptable and there are more students than seats it follows that there

exist stopping times t©) and cutoffs Dg-

Proof of the Uniqueness of the TTC Allocation

In this section, we prove the uniqueness claim in Theorem 2, that any two valid TTC
paths give equivalent allocations. The intuition for the result is the following. The

connection to Markov chains shows that having multiple possible valid directions in

40We choose the shortlex ordering to ensure that we choose valid directions corresponding to a
single recurrent communication class, rather than unions of recurrent communication classes.
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the continuum corresponds to having multiple possible trade cycles in the discrete
model. Hence the only multiplicity in choosing valid TTC directions is whether to
implement one set of trades before the others, or to implement them in parallel at
various relative rates. We can show that the set of cycles is independent of the order
in which cycles are selected, or equivalently that the sets of students who trade with
each other is independent of the order in which possible trades are executed. It
follows that any pair of valid TTC paths give the same final allocation.

We remark that the crux of the argument is similar to what shows that discrete
TTC gives a unique allocation. However, the lack of discrete cycles and the ability
to implement sets of trades in parallel both complicate the argument and lead to a
rather technical proof.

We first formally define cycles in the continuum setting, and a partial order over
the cycles corresponding to the order in which cycles can be cleared under TTC. We
then define the set of cycles X () associated with a valid TTC path ~. Finally, we
show that the sets of cycles associated with two valid TTC paths « and +' are the
same, X (7) = X (7).

Definition 4. A (continuum) cycle 0 = (K,z,7) is a set K C C and a pair of
vectors z < 7 in [0,1]°. The cycle ¢ is wvalid for available schools {C ()} peope if
K € K@ (2)Vr € (2,7].

Intuitively, a cycle is defined by two time points in a run of TTC, which gives a
set of students,*! and the set of schools they most desire. A cycle is valid if the set of
schools involved is a recurrent communication class of the associated Markov chains.*?
We say that a cycle o = (K, z,T) appears at time t in TTC (v) if K € KCO®) (v (¢))
and 7, (t) = T, for all c € K. We say that a student 0 is in cycle o if r? € (x,7]*3,

and a school ¢ is in cycle o if c € K.

Definition 5 (Partial order over cycles). The cycle 0 = (K, z,T) blocks the cycle
o' = (K',2',7'), denoted by o > ¢, if at least one of the following hold:

(Blocking student) There exists a student 6 in ¢’ who prefers a school in K to all
those in K, i.e. there exist 6 and ¢ € K \ K’ such that ¢ =% ¢ for all ¢ € K'.

41The set of students is given by taking the difference between two nested hyperrectangles, one
with upper coordinate T and the other with upper coordinate x.

42Note that we consider validity only in terms of whether the schools are the appropriate schools
for a trading cycle, and not in terms of the feasibility of trade balance for the students in the cycle.

43Recall that since 7%, z and T are vectors, this is equivalent to saying that r? £ 2 and r? < 7.
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(Blocking school) There exists a school in ¢’ that prefers a positive measure of stu-
dents in o to all those in o”, i.e. there exists ¢ € K’ such that n (6|6 in o, ¢ > 7)) >

0.4

Let us now define the set of cycles associated with a run of TTC. We begin with
some observations about HZ'“ (-) and HC (+)pe- For all b,c € C the function H° (+)
is right-continuous on |0, 1]0, Lipschitz continuous on R for all R € R and uniformly

bounded away from zero on its support. Hence 1 (Hflc ()) is constant on R for all

R € R. It follows that HC (-) » 15 also right-continuous, and Lipschitz continuous on
R for all R € R. Moreover, there exists some finite rectangular subpartition R’ of R
such that for all C C C the function 1 (HC ()> is constant on R for all R € R'.

Definition 6. Let R’ denote the minimal rectangular subpartition of R such that
for all C' C C the function 1 <ﬁc ()) is constant on R for all R € R'.

For z € [0, 1]C and C' C C, let K¢ () be the recurrent communication classes of the
Markov chain MY (z). The following lemma follows immediately from Proposition

6, since 1 (f[ ¢ ()) is constant on RVR € R/, and recurrent communication classes

depend only on 1 (ﬁc)
Lemma 8. K¢ () is constant on R for every R € R'.

For each K € KC (), let d¥ (z) be the unique vector satisfying d = dHC (z),
which exists by Theorem 4.

Let v be a TTC path, and assume that the schools are labeled in order. It follows
that for all z there exists ¢ such that C (z) = C*) X {¢,¢+1,...,|C|}. For each
set of schools K C C, let T¥) (K, ~) be the set of times 7 such that C (v (7)) = C¥)
and K is a recurrent communication class for H¢" (v (7)). Since 7 is continuous
and weakly decreasing, it follows from Lemma 8 that T (K, ~) is the finite disjoint
union of intervals of the form [¢,%). Let Z (T¥) (K, 7)) denote the set of intervals in
this disjoint union. We may assume that for each interval T, v (T") is contained in

some hyperrectangle R € R/.4°

44For ¢ to block the cycle o it is necessary but not sufficient that Z. > 7., since there also need
to be students in o with the intermediate ranks at school c.

45This is without loss of generality, since if v (T) is not contained we can simply partition T into
a finite number of intervals Urer/y=* (v (T') N R), each contained in a hyperrectangle in R’.
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For a time interval T = [t,7) € Z (T (K,v)), we define the cycle o (T) =
(K,z(T),z(T)) as follows. Intuitively, we want to define it simply as o (T) =
(K 7y (t),y (Z)), but in order to minimize the dependence on ~, we define the end-
points z (T') and T (T') of the interval of ranks to be as close together as possible,

while still describing the same set of students (up to a set of n7-measure 0). Define

2(T) = max{z:v(t)<az<y({t),n(0: Chy(CY) € K, 1’ € (x,7(F)]) =0},
T(T) = min{z:7@t) <z <~@) :n(0: Chg(C(f)) cK, ree(fy(z),x]) =0},

to be the points chosen to be maximal and minimal respectively such that the set
of students allocated by v during the time interval T" has the same n-measure as if
v(t) = z(r) and v (£) = T(7).*® In other words, z (1) and Z (1) are chosen to be
respectively maximal and minimal under the lexicographical order such that

N ((Ueex T (1) \TC(1:8)) \ {8 : Che (CY) € K, ¥ € (z(T),z(T)]}) = 0.

In a slight abuse of notation, if o = o (T") we will let z (o) denote z (T") and T (o)
denote T (7).

Definition 7. The set of cycles cleared by TTC (v) in round ¢, denoted by X (v),

is given by
KCC® Tez(T0 (K )

The set of cycles cleared by TTC (vy), denoted by 3 (7), is the set of cycles cleared
by TTC () in some round ¢,

2=z m.

For any cycle o € X () and time 7 we say that the cycle o is clearing at time T
if v(1) £ (o) and v (1) # 7T (o). We say that the cycle o is cleared at time T or
finishes clearing at time 7 if ¥ (1) < 2 (o) with at least one equality. We remark
that for any TTC path v there may be multiple cycles clearing at a time 7, each
corresponding to a different recurrent set. For any TTC path v the set ¥ () is finite.

Fix two TTC paths v and +'. Our goal is to show that they clear the same sets of
cycles, 3 () = X (7'), or equivalently that ¥ (y)UX (7)) = X (y)NX (7). We will do

46Tn order to take the maximum and minimum of the set of possible values for 2 and T respectively
we order the elements of [0,1]¢ lexicographically.
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this by showing that for every cycle o € X () U X (7/), if all cycles in 3 () U 3 (v/)
that block o are in ¥ () N X (7), then o € ¥ (y) N3 (7). We first show that this is
true in a special case, which can be understood intuitively as the case when the cycle

o appears during the run of TT'C' () and also appears during the run of T7C (7).

Lemma 9. Let £ = (C,0,n,q) be a continuum economy, and let v and v be two
TTC paths for this economy. Let K C C and t be such that at time t, v (v') has
available schools C' (C'), the paths v,~" are at the same point when projected onto
the coordinates K, i.e. v(t), =¥ (), and K is a recurrent communication class
of MC (v (t)) and of M (v (t)). Suppose that for all schools ¢ € K and cycles
o' > o involving school ¢, if o' € ¥ (v), then o' is cleared in TTC (v'), and vice
versa. Suppose also that cycle o = (K, z,T) is cleared in TTC (v), v (t) = z, and
measure 0 of o has been cleared by time t in TTC (7). Then o is also cleared in
TTC ().

Proof. We define the ‘interior’ of the cyclec by X ={z : 2. <z.<Z.Ve € K, xo >
2.V ¢ K}. Fix a time u such that 7/ (u) € X and let D’ denote the set of available
schools at time w in TT'C (7). Then we claim that K is a recurrent communication
class of MP' (¥’ (u)), and that a similar result is true for v and a similarly defined
D. The claim for ~, D follows from the fact that o is cleared in TTC (v), 0 € X (7).
It remains to show that the claim for 7/, D’ is true. Formally, by Lemma 6 it suffices
to show that H”' (2) g ¢ 1s irreducible and HY () ¢ pr\x 18 the zero matrix.

We first examine the differences between the matrices HY' (v (t)) and H?' (+/ (u)).
Since K is a recurrent communication class of M (' (u)), it holds that there are

no transitions from K to states outside of K, ie. 1 (f[cl (' (u))KC,\K) = 0.
Since K C D" C (' it follows that 1 (fID/ (' (u))K,D,\K> = 0. Moreover, since
1 (f[cl (' (u))KC\K> = 0, all students’ top choice schools out of C’ or D’ are the

same (in K), and so HY (v (W) g x = HY (+ (u)) g x and both matrices are irre-
ducible. Hence K is a recurrent communication class of M (7/ (u)).

We now invoke Theorem 4 to show that in each of the two paths, all the students
in the cycle o clear with each other. Specifically, while the path ~ is in the ‘interior’
of the cycle, that is vy (1) € X, it follows from Theorem 4 that the projection of the
gradient of v to K is a rescaling of some vector d¥ (v (7)), where d* (-) depends on

H (-) but not on 7. Similarly, while 4" (7') € X, it holds that the projection of the

gradient of 7' to K is a rescaling of the vector d* (7 (7')), for the same function
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d¥ (). Hence if we let mx (x) denote the projection of a vector z to the coordinates
indexed by schools in K, then 7x (v (v ((z, 7)) = 7x (v (/"1 ((z,7]))).

Recall that we have assumed that for all schools ¢ € K and cycles ¢’ > ¢ involving
school ¢, if ¢’ € ¥ (7), then ¢’ is cleared in TTC ('), and vice versa. This implies
that for all ¢ € K, the measure of students assigned to ¢ in time [0, ¢] under T7T'C ()
is the same as the measure of students assigned to ¢ in time [0,¢] under T7C (/).
Moreover, we have just shown that for any 2 € v (v ((z, 7)), 2’ € v (v~ ((z, 7]))
such that x5 = 2/ , if we let 7 =~~" (2) and 7/ = (v/)"" (/) then the same measure
of students are assigned to c¢ in time [t, 7] under T7'C () as in time [t, 7] under
TTC (7). Since TTC () clears o the moment it exits the interior of o, this implies
that TT'C (v') also clears o the moment it exits the interior. O

We are now ready to prove that the TTC allocation is unique. As the proof takes

several steps, we separate it into several smaller claims for readability.

Proof of uniqueness. Let v and 4 be two TTC paths, and let the sets of cycles
associated with TTC (v) and TTC (7') be ¥ = X (y) and ¥’ = 3 (') respectively.
We will show that ¥ = .

Let o0 = (K,z,7) be a cycle in ¥ U ¥’ such that the following assumption holds:

Assumption 2. For all 6 > o it holds that either ¢ is in both 3 and X' or ¢ is in

neither.

We show that if o is in ¥ U X' then it is in ¥ N Y'. Since ¥ and Y are finite sets,
this will be sufficient to show that ¥ = ¥'. Without loss of generality we may assume
that o € X.

We give here an overview of the proof. Let ¥., = {6 € ¥ : ¢ > 0} denote the set
of cycles that are comparable to o and cleared before o in TT'C (). Assumption 2
about ¢ implies that ., C ¥'. We will show that this implies that no students in o
start clearing under 77'C (') until all the students in ¢ have the same top available
school in TTC (v') as when they clear in TTC (), or in other words, that if some
students in o start clearing under TTC (v') at time ¢, then the cycle o appears at
time t. We will then show that once some of the students in o start clearing under
TTC () then all of them start clearing. It then follows from Lemma 9 that o clears
under both TT'C () and TTC (v).
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Let ¢ denote the round of TTC (v) in which o is cleared, C (z) = C¥ Vo € 0. We
define the times in 77'C () and TT'C (v') when all the cycles in ¥, are cleared, by

tre = min {t vy (t) < (z) for all & = (f(,@, (%)) € Sy and H (v (1)) # 0},
7 = min {t LA (1) < (@) for all & = (Kg (%)) e Yo and H (v (1)) # o} .
We define also the times in T7'C () when o starts to be cleared and finishes

clearing,
t,=max{t : v(t) > T}, t, =min{t : y(t) <z}

and similarly define the times ¢/, = max{t : ' (t) > T}, t, = min{¢ : 7' (¢t) < z} for
TTC (7).

We remark that part of the issue, carried over from the discrete setting, is that
these times .., and ¢, might not match up, and similarly for t'., and t’ »- In partic-
ular, other incomparable cycles could clear at interwoven times. In the continuum
model, there may also be sections on the T7T'C' curve at which no school is pointing
to a positive density of students. However, all the issues in the continuum case can
be addressed using the intuition from the discrete case.

We first show in Claims (1), (2) and (3) that in both T7'C () and TTC (v'), after
all the cycles in Y., are cleared and before o starts to be cleared, the schools pointed
to by students in ¢ and the students pointed to by schools in K remain constant (up

to a set of n-measure 0).

Claim 1. Let 0 = (K, z,%T) € X satisfy Assumption 2. Suppose there is a school ¢
that some student in o prefers to all the schools in K. Then school ¢ is unavailable
in TTC (v) at any time t > toy, and unavailable in TTC (y') at any time t > 1_.

Proof. Suppose that school ¢ is available in TTC' () after all the cycles in X, are
cleared. Then there exists a cycle ¢ clearing at time ¢ € (fiq,t,) in TTC (v) involving
school ¢. But this means that ¢ > o so ¢ € ¥.,, which is a contradiction. Hence
the measure of students in Y., who are assigned to school ¢ is ¢., and the claim

follows. ]

Claim 2. In TTC (), let © denote the set of students cleared in time [to0,t,) who
are preferred by some school in ¢ € K to the students in o, that is, 0 satisfying
rY > 7%, Thenn <(:)> = 0.
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Proof. Suppose n (é) > 0. Then, since there are a finite number of cycles in 3 (v),

there exists some cycle & = (f( .2, (%)) € X () containing a positive n-measure of
students in ©. We show that & is cleared before o. Since & contains a positive 7-
measure of students in ©, it holds that there exist ¢1,ty € [z_fw, io) and a school c € K
for which Z, < v (t1), < v (t2), < (%)C Hence T, < v (t,), < 7 (t1), < 7 (t2), < Ze, 50
& > o as claimed. But by the definition of 1, ¢ it holds that (i)c <7(t1), <7(t2), <

vy (ZM)C, so ¢ is not cleared before t.,, contradicting the definition of ?..,. ]

>o?Zo

Claim 3. In TTC (7', let © denote the set of students cleared in time [f/ t’) who
are preferred by some school in ¢ € K to the students in o, that is, 0 satisfying
r® > 7Z.. Thenn (é) =0.

Proof. Suppose n ((:)) > (. Then, since there are a finite number of cycles in X ('),
there exists some cycle 6 = <l~( , T, (%)) € Y (7') containing a positive n-measure
of students in ©. We show that & is cleared before o. Since & contains a positive

n-measure of students in O, it holds that there exist t1,ts € [%’W,z;) for which

B <7 (0), <7 (t2), < (@), Hence T, <7/ (), < 7' (t), < 7' (1), < Fus0 & >

and must be cleared before o. Moreover, (z), < 7' (t1), < 7' (t2). < v (f‘;C,) , so it

Cc
follows from the definition of 7, that & & .., but since we assumed that & € ¥ it

follows that & € 3\ ¥, contradicting assumption 2 on o. ]

We now show in Claims (4) and (5) that in both TT'C () and TT'C (v') the cycle
o starts clearing when students in the cycle o start clearing. We formalize this in
the continuum model by considering the coordinates of the paths v, at the time
t, when the cycle o starts clearing, and showing that, for all coordinates indexed by

schools in K, this is equal to T.

Claim 4. vk (t,) = Tk.

Proof. The definition of ¢, implies that v (¢,). > Z. for all ¢ € K. Suppose there
exists ¢ € K such that v(t,)., > Z.. Since o starts clearing at time ¢,, for all
€ > 0 school ¢ must point to a non-zero measure of students in ¢ over the time
period [t,,t, + €], whose scores ¥ satisfy v (¢,), > r? > v (t, +¢),. For sufficiently

small € the continuity of v (-) and the assumption that v (¢,). > 7. implies that
r? >~ (t, +¢€), > T. , which contradicts the definition of Z,. O
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Claim 5. vy () = Tk.

As in the proof of Claim (4), the definition of ¢, implies that 7/ (¢), > . = v (¢,)
for all ¢ € K. Since we cannot assume that o is the cycle that is being cleared at
time ¢t/ in TTC (v'), the proof of Claim (5) is more complicated than that of the

Claim (4) and takes several steps.

c

We rely on the fact that K is a recurrent communication class in T7'C (), and
that all cycles comparable to ¢ are already cleared in TT'C (7). The underlying
concept is very simple in the discrete model, but is complicated in the continuum by
the definition of the TT'C path in terms of specific points, as opposed to measures of
students, and the need to account for sets of students of n-measure 0.

Let K_ be the set of coordinates in K at which equality holds, ' (t.),. = v (¢,).,
and let K- be the set of coordinates in K where strict inequality holds, 7' (¢,), >
v (t,),.. It suffices to show that K. is empty. We do this by showing that under
TTC (v') at time t/, every school in K- points to a zero density of students, and
some school in K_ points to a non-zero density of students, and so if both sets are
non-empty this contradicts the marginal trade balance equations. In what follows,
let C' denote the set of available schools in TT'C' () at time ¢, and let C’ denote the
set of available schools in TTC' (') at time ¢, .

Claim 6. Suppose that ¢ € K. Then there exists ¢ > 0 such that in TTC (v'),
the set of students pointed to by school ¢ in time [t.,t. + €] has n-measure 0, i.e
HC ( ( ))cb = 0.

Proof. Since ¢ € K. it holds that 7/ (t)). > Z., and since 7' is continuous, for
sufficiently small ¢ it holds that 7' (¢, +¢), > Z.. Hence the set of students that
school ¢ points to in time [, ¢, + ¢ is a subset of those with score r? satisfying
v (L), >r? >+ (t, +¢), > T.. By assumption 2 and Claim (3) any cycle & clearing
some of these students contains at most measure 0 of them, since ¢ is cleared after
Yo and before o. Since there is a finite number of such cycles the set of students

has n-measure 0. O

Claim 7. If c€ K_, be K and HC (v (¢ o)) >0, then HE' (v (¢! ")) > 0.

Proof. Since every HC (v (£.)) « 18 a positive multiple of H, 2O (y (t)), it suffices
to show that HJ (v (t)) > 0. Let X (¢) ) (v (t'y) —€-e,v ('s)]. We first
show that for sufficiently small ¢ it holds that n’/® (X (g)) = Q(e). Let X_ () = X
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(v (t,) — - €%~ (t,)]. Since HC (v (t,)) 4 > 0, it follows from the definition of H° (+)
that HJC (z) = lim.,0 17! (S ()) > 0 and hence 7”1 (X_ ()) = Q () for suffi-
ciently small €. Moreover, at most n-measure 0 of the students in ¥_ (¢) are not in
the cycle . Finally, ¥’ (¢) D ¥_ () \ ¥4 (¢), where X, (¢) 24 (7 (ts) + € e, (ts)]-
If ¢ < Z. — x,. then n-measure 0 of the students in ¥, (¢) are not cleared by cycle o.
Hence 1€ (3 (2)) > € (2 (€)) — 1 (24 () = Q(e).

Suppose for the sake of contradiction that H2< (7' (£,)) = lim._ I (27 (e)) =
0, so that n!I (X' (¢)) = o (e) for sufficiently small e. Then there is a school &' # b
and type 0 € @Y1 NOYIY" such that there is an n-measure Q (¢) of students in o with
type 6. Since b’ € C it is available in TT'C (v') at time ¢/, and by Claim (1) it holds
that o’ € K . Moreover, 6 € % implies that 6 prefers school b to all other schools

in K, so b =1, contradiction. ]

Proof of Claim (5). Suppose for the sake of contradiction that K. is nonempty.
Since some students in o are being cleared in TTC (') at time ¢/, by Claim (3)
there exists c € K = K_ U K- and b € K such that HS' (v/ )y >0. Ifce Ko
this contradicts Claim (6). If ¢ € K_, then H” (y(t,)), > 0 and so by Claim
(1) HC (v (t,))p > 0. Moreover, K = K_ U K. is a recurrent communication
class of HY (v (t,)), so there exists a chain ¢ = ¢y — ¢; — ¢3 — +-- — ¢, such that
HC (v (to))eser,, > O foralli <n, ¢; € K- foralli <n-—1,and ¢, 1 € K. By
Claim (7) H (3 (&),

HY (v (t5))e. .., = 0, which gives the required contradiction. O

> 0 for all i < n. But since ¢,—1 € K-, by Claim (6)

Proof that ¥ = ¥’. We have shown in Claims (4) and (5) that for our chosen
o = (K,z,7), it holds that v (t,);, = 7' (t,)x = Tk. Invoking Claims (2) and (3)
and Lemma 9 shows that o is cleared under both TTC (y) and TTC (v'). Hence
Y =Y/, as required. ]

D.5 Proof of Proposition 2

In this section, we show that given a discrete economy, the cutoffs of TTC in a

continuum embedding ® give the same assignment as TTC on the discrete model,

parre (s | E) = max {c : r; > p; for some b} = porre (6° | P (F)) VO° € I°.
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Specifically, for a discrete economy E = (C,S,>¢, =7, q) with N = |S| stu-
dents, we define the continuum economy ® (E£) = (C,0,7, &) as follows. For each
student s € S and school ¢ € C, recall that 5 = |{s'|s>.s'}|/|S| is the per-
centile rank of s at ¢. We identify each student s € § with the N-dimensional cube
P == xJ],ec [rﬁ,rﬁ + %) of student types with preferences >°, and define 1 to
have constant density % - N¥ on U,I* and 0 everywhere else.

The intuition behind this result is that TTC is essentially performing the same
assignments in both models, with discrete TTC assigning students to schools in
discrete steps, and continuum TTC assigning students to schools continuously, in
fractional amounts. By considering the progression of continuum TTC at the discrete
time steps when individual students are fully assigned, we obtain the same outcome
as discrete TTC.

Proof. Fix a discrete cycle selection rule 1. We construct a TTC path 7 such that
TTC on the discrete economy E with cycle selection rule v gives the same allocation
as TTC (v|® (F)). Since the assignment of discrete TTC is unique (Shapley & Scarf
1974), and the assignment in the continuum model is unique (Proposition 2), this
proves the theorem.

Consider a point during the run of discrete TTC when all schools are still available.
At this point, denote by z. the c-rank of the student pointed to by school ¢ for
all ¢ € C , and denote by S (x) the set of assigned students. By construction,
r e X = {O, %, %, ey 1}6. In the next step the discrete TTC clears a cycle and
schools point to their favorite remaining student. Let K be the set of schools in
the cycle, and let d. = 1.ck). Denote by y. the c-rank of the student pointed to
by school ¢ after the cycle is cleared for all ¢ € C , and denote by S (y) the set of
assigned students after the cycle is cleared. Note that x —y = %d.

Suppose that in continuum TTC there is a TTC path such that v (¢;) = & +1-+ €
X. First, notice that by time ¢; the continuum TTC has assigned 6 € I° if and only
if s € S (x). Second, we will show that v (t) =@ — (t — t1) +d + + for ¢t € [t1, 1+ 1)
satisfies the trade balance equations, and thus the continuum TTC can progress to
Y(ti+1) =y+1-1% € X. To see that, observe that H (z+1-%) = 1 if in
the discrete TTC school ¢ is the favorite school of the student with b-rank x;, and

Hy (:1: +1- %) = 0 otherwise. On the path ~ (t) we have that for every b,c € K
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H () = g (410 ) (1= (- 1)

and if b € K and ¢ ¢ K then Hf (v (t)) =0.
Therefore for any ¢ € K

ST HS (7 (1) = (1= (= 12)) = S dHE (7(1)),

acC aceC

and for any ¢ ¢ K

Do daHg (v (1) =0=) d.HE (v(1)).

aeC aeC

Thus, the trade balance equations hold for ¢ € [t;,t; + 1), and there is a continuum
TTC path such that v (t1) = @, 7 (t2) = y.

The claim follows by induction on the number of cycles cleared so far in discrete
TTC. O

D.6 Proof of Theorem 3

Consider two continuum economies & = (C,0,n,q) and £ = (C, 0,1, q), where the
measures 1 and 7 satisfy the assumptions given in Section 3. Suppose also that the
measure 77 and 7 have total variation distance ¢ and have full support. Let v be a
TTC path for economy &, and let 4 be a TTC path for economy & . Consider any
school ¢ and any points = 7 (¢) € Im (y), & = 7 () € Im (%) such that z. = Z,
and both are cleared in the first round of their respective TTC runs, ¢t < t and
t <tM. We show that the set of students allocated to school ¢ under TTC (7y) from
time 0 to t differs from the set of students allocated to school ¢ under T7T'C (%) from
time 0 to £ by a set of measure O(¢|C|).

Proposition 11. Suppose that v, ¥ are TTC paths in one round of the continuum
economies € and & respectively, where the set of available schools C' is the same in
these rounds of TTC () and TTC (v'). Suppose also that ~y starts and ends at z,y,
and 7 starts and ends at Z,7, where there exist b,c € C' such that x, = Ty, Yo = Ye,
and v, < Ta, Yo < Yo for all a € C. Then for all ¢ € C, the set of students with

ranks in (y,x] N (g, zJwho are assigned to ¢ under TTC () and not under TTC (¥)
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has measure O (g |C|).*"

Proof. By Lemma 4, we may assume without loss of generality that v and 7 are
parametrized such that z = v(0),y = v(1) and £ = 5(0),g = 7 (1), and for all
times 7 € [0, 1] there exists a school ¢(7) such that « (7) is dominated by ¥ () via
school ¢ (7).

Let T. = {7 <1 : ¢(7) = ¢} be the times when 7 is dominated by 7 via school
c. We remark that, by our construction in Lemma 4, we may assume that 7, is the
countable union of disjoint closed intervals, and that if ¢ # ¢’ then T, and T have
disjoint interiors.

Since 7 is a TTC path for £ and 7 is a TTC path for £, by integrating over
the marginal trade balance equations we can show that the following trade balance

equations hold,

(T (1) = n(T99 (1) forallceC. (5)
i(T.(%:T.) = 7(T99(3;T.)) forall ceC. (6)

Since 7 is dominated by 4 via school b at all times 7 € T}, we have that
To(v;Ty) S To(3:1h)- (7)
Moreover, by the choice of parametrization, Uy}, = [0, 1] and so, since = < 7,
U T (1: 1) 2 Up e T (3 Th) - (8)

Now since 7,7 have total variation ¢, for every school ¢ it holds that

n (T (i THO\NT (1)) < n (T T) —n (T99 (3 T2)) + e (by (8))
= n(Te(v;Te) —7(Te (¥;T,)) + € (by (5) and (6))
< 2 (by (7)), (9)

Also, for all schools b # ¢, since 1 has full support and bounded density v € [m, M|,

47This is according to both measures 1 and 7.
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it holds that

n (T (L) \ T (3: Th)) <

(T T\ T ). (0)

Hence, as Tj, have disjoint interiors,

n (Tc|C (73 1) \ TCIC (,3,’ 1)) — Z (77(7'C|C (fy; Tb)) — n(TCIC (;}/7 Tb)) (by (8))

< D (T T\ T (% Th)
beC
< Y (TCGTNTI G ) (by (10)

< 2(Cle (by (9))

That is, given a school ¢, the set of students assigned to school ¢ with score
r? £ x under v and not assigned to school ¢ with score 7’ £ & under 7 has n-measure
O (¢|C]). The result for 77 follows from the fact that the total variation distance of 7
and 7 is €. O

We are now ready to prove Theorem 3.

Proof of Theorem 3. Assume without loss of generality that the schools are labeled
in order. Let o be a permutation such that if we reindex school o (¢) to be school ¢
then the schools are labeled in order under T7C' (7). We show by induction on ¢ that
o (¢) = ¢ and that for all schools ¢, the set of students assigned to ¢ under TTC (v)
by the end of the fth round and not under 77°C (7) by the end of the ¢th round has
n-measure O (e/ |C|). This will prove the theorem.

We first consider the base case { = 1. Let 2 = 2 = v(0) and y = ~ (¢tV).
Define § € Im (%) to be the minimal point such that y < § and there exists ¢ such
that y. = y.. We show that ¢ is near ﬁ(f(l)), ie. |gj -5 (f(l))|2 = O (g). Now by
Proposition 11 the set of students with ranks in (y,~ (0)] N (7,7 (0)] who are assigned
to 1 under TTC () and not under T7TC (7) has 7-measure O (¢|C]). Hence the
residual capacity of school 1 at § under T7TC () is O (¢|C|), and so since 7 has full
support and has density bounded from above and below by M and m, it holds that
17— (tW) ‘2 = O (¥¢|C|). (If the residual capacity is negative we can exchange

the roles of v and 4 and argue similarly.)
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Let us now show that the inductive assumption holds. Fix a school ¢. Then by
Proposition 11 the set of students with ranks in (y,~ (0)] N (7,7 (0)] who are assigned
to ¢ under T7TC () and not under TT'C (%) has 7-measure O (¢|C]). Moreover,
since ‘y 7( )‘2 (%5 IC |) and 77 has full support and has density bounded
from above and below by M and m, the set of students with ranks in (g,% (V)]
assigned to school ¢ by TTC (¥) has 7-measure O (¢ |C|). Hence the set of students
assigned to ¢ under TTC () by tlme tM and not under TTC (%) by time ) has
n-measure O (g |C|). Moreover, if t(!) < #2) then for sufficiently small ¢ it holds that
tM = min, £, and otherwise there exists a relabeling of the schools such that this
is true, and so o (1) = 1.

We now show the inductive step, proving for /41 assuming true for 1,2,...,/. By
inductive assumption, for all ¢ the measure of students assigned to ¢ under TTC (v)
and not under TTC (§) by the points v (¢©)) , 7 (1) is O (e£|C|) for all c.

Letx =7~ (t“)) andy =~ (t(”l ) Define & € I'm (%) to be the minimal point such
that < z and there exists b such that x;, = 7;,. We show that Z is near 7(25(@)7 ie.

& — 7 (19 )‘2 = O (). Now by inductive assumptionn ({6 |r? € (z =~ (t*) .7 (f(g))]}) =

O (ef|C]) and so |z —7 (1)) |, = O (). Moreover |z, — 3, (19)|, = |zo — 3 (£9)],
which we have just shown is O (¢). Finally, since n has full support and has density
bounded from above and below by M and m, it holds that max; . , % =0 (%)
and so for all ¢ it holds that |[EC e } < O m )

The remainder of the proof runs much the same as in the base case, with slight
adjustments to account for the fact that x # Z. Define y € Im () to be the minimal
point such that y < y and there exists ¢ such that y. = y.. We show that g is near
F(EH), }y 3 (D )‘2 = O (g). Now by Proposition 11 the set of students
with ranks in (y, 2] N (7, Z] who are assigned to ¢ 4+ 1 under TT'C () and not under
TTC (%) has -measure O (e |C|). This, together with the inductive assumption that
the difference in students assigned to school ¢ is O (€ |C|), shows that the residual
capacity of school ¢ + 1 at g under TTC (%) is O (¢ (¢ 4+ 1)|C|), and so since 7 has
full support and has density bounded from above and below by M and m, it holds
that |§— 7 (¢“+Y )‘2 O (Me(¢+1)|C|). (If the residual capacity is negative we
can exchange the roles of 4 and 4 and argue similarly.)

Let us now show that the inductive assumption holds. Fix a school c. Then by
Proposition 11 the set of students with ranks in (y,z] N (g, Z] who are assigned to
c under TTC () and not under TTC (¥) has f-measure O (¢ |C|). Moreover, since
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|7 — 7 (1) |, = O (e (¢+1)]C|) and 7 has full support and has density bounded
from above and below by M and m, the set of students with ranks in (g,5 (£¢1)]
assigned to school ¢ by TTC (%) has f-measure O (¢ (¢ + 1) |C|). Hence the set of
students assigned to ¢ under TTC () by time t“*Y and not under TTC (7) by time
t*D has n-measure O (¢ (¢ + 1) |C|). Moreover if ¢+ < #(+2) then for sufficiently
small ¢ it holds that £t = min,.,t(©), and otherwise there exists a relabeling of the
schools such that this is true, and so o (¢ +1) = ¢ + 1. O

D.7 Proof of Proposition 3

Throughout the proof, we omit the dependence on E and let B* (s) denote B* (s|E).

For brevity, we also let B(s) = () B{(s,p) denote the intersection of all possible
peP(E)
budget sets of s in the continuum embedding with some path v and resulting cutoffs p.

We construct TTC cutoffs {(p*)z = (t(c))} given by a TTC path v* and stopping
times {t(c)~}cec that satisfy trade balance and capacity for ® (F) such that B* (s) C
B (s) C B(s;p*) C B*(s).

We first show that B* (s) C B (s). Suppose ¢ ¢ B (s). Then there exists a TTC
path v for E such that r* + ﬁl <~ (t(c)). Hence for all > there exists a TTC path
7 € P([E_g; >]) such that r* + ﬁl < 7 (t9), e.g. the TTC path that follows the
same valid directions as v until it assigns student s. By Proposition 2 and Theorem
2 for all > it holds that pgrre (s | [E_s; >]) = maxs {c LTy >y (t(c))b for some b}.
Hence for all = it holds that pgsrre (s | [E_s; =]) # ¢ and so ¢ € B* (s).

We next show that B(s) C B(s;p*) C B*(s). Intuitively, we construct the
special TTC path v* for E by clearing as many cycles as possible that do not involve
student s. Formally, let > be an ordering over subsets of C where: (1) all subsets
containing student s’s top choice available school b (under the preferences >° in E)
come after all subsets not containing b; and (2) subject to this, subsets are ordered
via the shortlex order. Let v* be the TTC path for E obtained by selecting valid
directions with minimal support under the order t>. (Such a path exists since the
resulting valid directions d are piecewise Lipschitz continuous.)

It follows trivially from the definition of B (s) that B (s) C B (s;p*). We now
show that B (s;p*) C B*(s). For suppose ¢ € B (s;p*). Consider the preferences >’
that put school ¢ first, and then all other schools in the order given by =°. Let E’

denote the economy [E_g; >']. It remains to show that psrre (s | E') = c.
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Since ¢ € B (s;p*), it holds that r® £ ~* (t(c)). In other words, if we let 7* =
inf {7 | v*(7) 2 r°} be the time that the cube I* corresponding to student s starts
clearing, then school ¢ is available at time 7°. Let 4" be the TTC path for E’
obtained by selecting valid directions with minimal support under the order >, and
let 7/inf {7 |~ (1) # r*}. We show that 7 < 7* and school c is available to student
s at time 7',

Consider the time interval [0, min{7*,7'}]. During this time the set of valid
directions along the TTC path remain the same (i.e. % = 47, as the set of valid
directions not involving student s*® hasn’t changed, and student s’ has not yet been
assigned under either TTC (v*|E) or TTC (v/|E’) so we do not need to consider
the set of valid directions involving student s. Now at worst in going from ~, F
to v/, [E_s; ='] we have replaced a valid direction involving s and b with a different
valid direction involving s and not involving b, so student s is assigned sooner in
TTC ('|E') than in TTC (v*|E), giving 7 < 7*. Hence 7' (7') = v*(7’) where
7 < 7 < 1 and so school ¢ is available to student s when she is assigned. Hence
by Proposition 2 and Theorem 2 it holds that pgrre (s | E') = ¢ and so ¢ € B* (s).

E Proofs for Applications (Section 4)

Throughout this section, we will say that a vector d is a wvalid direction at point x
if d satisfies the marginal trade balance equations at z, and d -1 = —1. We will
also augment the notation from Section 3 to specify the economy. Specifically, for an

economy & = (C,0,n,q) let
D (z|€) =n ({0 | ¥ £ =, Ch®(C) =c})

denote the mass of students whose rank at some school b is better than z; and their

first choice is school c.

48We say that a valid direction ’involves’ a student s if it starts at a point # on the boundary of
their cube I° and points into the interior of the cube.
49More formally, no points in the cube corresponding to student s are assigned.
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E.1 Effects of Changes in the Distribution of School Quality

In this section, we prove the results stated in Section 4.1. We will assume that the
total measure of students is 1, and speak of student measures and student proportions

interchangeably.

Proof of Proposition 4. Given quality 9, let 7 be the measure over © and ~, p, {t(l), t(z)}
be the TTC path, cutoffs and stopping times. Given quality B , let ) be the measure
over © and 4, p, {{V),#*} be the TTC path, cutoffs and stopping times.

For each z € [0,1]° let d () (resp. d(z)) denote the valid direction at 2 under
Es (resp. &;) with support that is minimal under the order {1} < {1,2} < {2}.
d, (x)‘ and |d (z)] < |d (m)‘ for all 2.5
It follows that 4 moves faster in the 2 direction than v does, i.e. if 71 (t) = ¥ (f)
then v, (1) > 42 (f), and if v, (1) = A2 (f) then v (1) <44 (f) Hence without loss of

generality we may assume that the time parameters in the TTC paths are scaled so

As there are only two schools, |d; (z)| >

that at all times ¢ the path 4 is dominated by 7 via school 1, i.e. v () = 41 (t) and
72 (t) > Ao (t) for all t (see Appendix (D.2)).

Suppose for the sake of contradiction that p} < p3, i.e. 7o (V) < 42 (V). We
may interpret this as it becoming more difficult to use priority at school 2 to trade
into 1 after 2 gets more popular. We will show that this will also result in more
students being assigned under v by time t() than under 4 by time (). But since
school 1 is also more popular under £ this means that more students are assigned to
school 1 under TTC (v|€) than TTC <ﬁ|é>, which gives the required contradiction.

More formally, since 4 is dominated by v via school 1 at time ¢™") it follows that
Fo (W) < 75 (V) < A2 (1) and so {1 <t ie. school 1 now fills earlier. Hence
M (f(l)) > M (t(l)) =y (t(l)), where the equality comes from the assumption that 4
is dominated by 7 via school 1 at time ¢(!). But this gives the necessary contradiction,
as 4 (V) >~ (tV) implies that

@ = D' (7 (1) 1&) < D" (v (1) &) < D' (v (tVI€5)) = o,

where the first inequality follows from # (5(1)) >y (t(l)) and the second inequality
holds since 52 > 09 and 51 = 0.

We now show that pi > pl, i.e. it becomes easier to use priority at school 1

5ONote that by definition valid directions have norm 1.
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to be assigned to school 1. Suppose for the sake of contradiction that p} < pi, i.e.
v (tW) < 4 (). We will use the marginal trade balance equations to show that
this means more students traded into school 1 under v by time ¢t than under 4 by
time £, which gives the required contradiction.

Since 4 is dominated by v via school 1 it holds that 4 (t1)) =~ (tV) < 4 ()
and so t() > £ ie. school 1 fills earlier under TT'C (’ﬂé) Hence the sets of
students offered seats by school 1 satisfy

Ti (vt 2T (v t9) 2 T (30

where the first containment follows from the fact that t) > #() and the second
containment follows from the fact that 4 is dominated by v via school 1, and so fewer
students are offered /trade away seats at school 1 by time ") under 4 than under ~.

Moreover, integrating over the marginal trade balance equations gives that under
both paths, the set of students who traded a seat at 2 for a seat at 1 has the same

measure as the set of students who traded a seat at 1 for a seat at 2,
n ({9 €T <’y; t(1)> |Ch? {1,2} = 1}) =1 <{9 e (’y;t(l)) |Ch? {1,2} = 2}) and
(11)
A ({9 €T ('3/; £<1)) |CRf {1,2) = 1}) - ({9 e (&;f(l)) |Ch {1,2) = 2}) . (12)

Hence we can compare the number of students assigned to school 1 using these sets,
and find that

@ =n({0eT (fy;t(l)) lch{1,2y =1} +n({0 €T (fy;t(l)) |ChY {1,2} = 1})
=n ({0 € Tu (%) }) (by (1))
>n ({9 S (&; f(l)) }) (since the sets are strictly contained)
=i ({0 € T (3:1")})
=n ({0 € T (v:tV) |CRP{1,2} = 1}) + 7 ({0 € T5 (v;tV) |ChP{1,2} = 1})
(by (11))
=1

which gives the required contradiction.

The fact that p3 > p2 follows from the fact that pj < pi decreases, since the total
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number of assigned students is the same. ]

Proof of Proposition 5.

In the logit economy we assume that the total measure of students is normalized to
1, and that ) _q. < 1. Recall that we also assume that all students prefer all schools
to being unassigned. Note that the logit economy yields that P (C’h9 (C) = c) =

650
ZaEC eda’
We first show that schools are labeled in order if equl < 6‘1722 < -0 < e‘{;—z. This

holds since at any point 7 (t) = @ in the first round the choice probabilities yield

that ZLce‘;” (1 — [, =) students are assigned to school ¢, and so for all b,c the
ac

ratio of students assigned to schools b and ¢ respectively is z% and if the schools are

labeled in order then %- = min. . The other inequalities hold by induction, since

in any round with remaining schools C' and ¢ € C' the choice probabilities yield that
a fraction ﬁ of the students assigned to schools in C' are assigned to school ¢
so again for all b, c € C' the ratio of students assigned to schools b and ¢ respectively
in that round (or any preceding round) is Z%

This also shows that R° =1— %" ,__ qo — Z&q. is the measure of unassigned, or
remaining, students after the cth round, since if ¢ < ¢ then ¢. students are assigned

(] .
to school ¢/, and if ¢ > ¢ then 55-q. students are assigned to school .

TTC Cutoffs We calculate the TTC cutoffs under the logit economy for differ-
ent student choice probabilities by using the TTC paths and trade balance equations.

We show by induction on ¢ that for all ¢

(H (i)l/”a)eéb ifbh>c
a<c \ Ra—1 =&

» otherwise,

Py = (13)

where 7. = Zc'zc e’ R® =1 and for all ¢ > 1 the quantity R = 1— Yoo — T e

is the measure of unassigned, or remaining, students after the cth round. We note

9c  _ Gc—1
ede edcfl ?

that if we let p. = where ¢._1 = 0.1 = 0, then

Mo T
c—1 c c—1 c
R — R = —m%—l + qe—1 + EQC = PcTe,
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and so

S peme = RV RY=1-R".

c/'<c c/'<c

Consider the base case ¢ = 1. In round 1, the marginals Hf (x) for b, ¢ € C at each
se

point = € [0, 1] are given by Hf (z) = SR [Iosp@e. As the valid directions d =
ac

d () solve the marginal trade balance equations, they must satisfy > .. d,HS (v) =

Y wec dcHE (), or equivalently

d d
oy o e o
Tq

Te

aeC acC
Now the vector d (x) defined by
ez,
de () = ~=————
() S o,

clearly satisfies both the marginal trade balance equations and the normalization

d(z)-1= —1. Moreover since H (z) is irreducible this is the unique valid direction
d.

We now find a valid TTC path v using the trade balance equations (2). Since the

dp ()
de(x)

¢ we solve for x. in terms of x1, using the marginal trade balance equations and the

ratios of the components of the gradient only depend on z;, z. and the J., for all

fact that the path starts at 1. This gives the path v defined by 7. (v (z1)) = 2
for all c.

Recall that the schools are indexed so that school ¢ is the most demanded school,
that is, eqill = max, eqi. Now school ¢; fills at a time ¢ where the TTC path is given

by 7. (t(l)) = xférél and the number of assigned students is given by
1-—- H’yc (t(l)) =1-R'

where the left hand side is the measure of students with rank at least ~, (t(l)) for at
least one school ¢, and the right hand side is the number of assigned students.
This yields that
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Py =1 (1) = (H% (t“))) = (R") ™ .

where m; = Y-, €%'. This completes the base case.

For the indugtive step, suppose that Equation (13) holds for the cutoffs in rounds
1,2,...,c— 1. Consider the residual TTC path during the cth round and let it be
denoted by 5. For all b > clet 2, = ¥, (t). Recall that by definition 7 (t) = p{~' = p}
for all b < ¢ and t > ¢V, The residual TTC path is non-constant only for schools b

in the set C© = {¢,c+1,...,n}, and the marginal trade balance conditions specify
that for these schools b and for all x < p°~! it holds that % = gi—;b . Therefore

we can solve for x; in terms of x, , using the fact that the path starts at pc~!. The

marginal trade balance conditions and initial conditions yield that for all b > ¢

—é

SOOI M
8

-6

Te )™ ()"

Y

where the first equality is obtained by integrating over the marginal trade balance
equations and providing the initial conditions, and the second equality holds by
substituting in the values of p¢~! in the inductive assumption. Hence the path 7 is
defined by 7, (31 (2.)) = 2" for all b > ¢, and 7, () = pp for all b < c.

C
b —0c

Now school c. fills at a time #©) where the TTC path is given by 7, (t(c)) = ¢
for all b > ¢ and 7, (t(c)) = p? for all b < ¢, and the number of students assigned from
time t(c=1 to ¢(9 is given by

s - T1eo T (t9) = R = e, (14)

cdeC d<c b>c

where the left hand side is the measure of students with rank at least 7, (t(c)) for at
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least one school b who is not assigned in one of the first ¢ — 1 rounds. Noting that

1;[195‘1 = ( 11 pZ) < 11 p§_1>

b<c—1 b>c—1
R 1-Te_1/Ta RY Te—1/Ta
- (1L, () I ()
a<c—1 a<c—1
— Rc—l

allows us to simplify equation (14) to

H eb—dc ke
M = H Py

b>c c'<c Dy

(]
Substituting in p& ! = (Hagd (%)Uﬂ‘l) yields

)

e‘sb/7rC e‘b

a _(7ra_7rc)/77a a 1/7ra

o0b /e . R R

Ty = L / = (R | | (Ra—l) > - <l l (Ra—l) )
a<c

a<c

as required. O

TTC Cutoffs - Comparative Statics We perform some comparative statics
calculations for the TTC cutoffs under the logit model. For b # ¢ it holds that the
TTC cutoff p for using priority at school b to receive a seat at school 1 is decreasing
in ;. Formally,

op, 0 eSb
375@ = 8764 (1= p1m1)

N ede+ob | 1 1
S i I v 1
P\ ) [ (1017T1> (L= p1m)

is negative, since 0 < m <land f(z) =2 —In(z) — 1 is positive for = € [0, 1].
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For b = ¢ the TTC cutoff p; is again decreasing in dy;

98, 9

o (P () - () (e )

is negative since both terms are negative.
Similarly, for ¢ < £ and b > ¢ the TTC cutoft pj is decreasing in d,. We first show
that this holds for ¢ < £ and b > ¢, b # ¢ by showing that e%b In p§ is decreasing in dy.

1 K
8pz 0 |:(1—p171'1)“1£]

Now
a1, ] o 1 R
o5, [5 lnpb} = 75 [Z o (R)
_ G N Y 5 W R T
B a<c (7.((1)2 Ra_l eéé 6(55 Ra_l
where
N O N I et i 7
86€ Ra—1 Ra—1Ra
65@ a—1 [ Y9a a { da—1
~  Re-1Ra {R (e5a) - R (e‘safl )}
665 a—1 da—1
~  Ro-1Ra {R Pa+ Tapa (e‘sa*l )}
e’ pa
= _RaflRa L- Z G | -
c'<a
Hence

R 1 1
() ) (2] =

0 [1 el e%
i [ - 2 (5)
where the last inequality holds since for all a the first term is negative, and the
second term is given by f, (R*) — f, (R*™') where f, (z) = (1 =Y ._,q¢) = +In(z)
has negative derivative f,(z) < 0 for all z < (1—-3,_,¢~), and R* < R*! <

(1 - Zc’<a qc’) 50 fa, (Ra) - fa (Ra_1> Z 0.
For ¢ < ¢ and b = ¢ the TTC cutoff pj is also decreasing in d,, since

%) o [e’ e o)
s O cl — — c s c <
20, [In pg] 93, Léb lnpc} = (lnpc + a0, [lnpc]) <0
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where the last inequality holds since p; < 1 and we have shown that 75 [ln g <0.
When ¢ = ¢ and b > /, we note that

HpﬁHpg =R’ ie

a>/l <t
1
Y €% /e
b — o ‘
Hc’<€ Po

9, Léb lnpb] =05, [W <lnR Zlnp(,>]

/<t

Hence

where the first term is positive since pj < 1 (from which it follows that In R® —

To+1

(%)

Y w<¢In(p) < 0), and the second term is positive since %—?j = q¢ > 0 and we

have shown that for all ¢ < ¢ it holds that 6% [ln pgi} <0.
4

Proof of Proposition 6.

Welfare Expressions We derive the welfare expressions corresponding to these
cutoffs. Let C© = {¢,c+1,...,n}. Since the schools are ordered so that A <2<
- < 4 it follows that the schools also fill in the order 1,2,.

Suppose that the total mass of students is 1. Then the mass of students with bud-
Zb

get set C is given by N = ¢ ( > = p171, and the mass of students with budget

. . e92 3617
set C? is given by N2 = (qg — zje% N1> (Zbﬁ ) = (q—2 - ) (Zb>26 ) = PaTo.

A straightforward inductive argument shows that the proportlon of students with

budget set C( is
c __ qc qc—l z : 5 o
NT= (65c N 65&1) ( ¢ b) = PeTe:

b>c

which depends only on d, for b > ¢ — 1.
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Moreover, each such student with budget set C'®), conditional on their budget set,
has expected utility Small & Rosen (1981)

Uc:]E[maX{db+5gc ] In [Zeéb] In (7.),

(c)
cdeC b

which depends only on ¢, for b > ¢. Hence the expected social welfare from fixed

qualities 0. is given by

Urrc =) N°-U°=) perclnm,,

where m, = >_,.. %

Welfare - Comparative Statics Taking derivatives, we obtain that

AUrre N qu dN® due
— . C NC . C NC .
s, Z ( a, U d@) CZ i, Y +; a5,

where ., N°¢- Zﬁ{j =D et PeTie - iri = e Y o pe = qo- Tt follows that

dUrre aNe
@, 0T > o, U
c<tl+1

O

Proof of Proposition 7. We solve for the social welfare maximixing budget allocation.
For a fixed runout ordering (i.e. equl < 6(1722 < ... < 4, the central school board’s

investment problem is given by the program

mXZ( - )(ZH) In (Z) (15)

s.t.£ < 2 Vi

Ri—1 Ri—1

ZF&Z‘:K

i

go = 0.
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We can reformulate this as the following program,

m o 92 q1 G Qi1
B VRmE+ (L ) (L T (16
e <K— ) im) . (/12 K-> im) T2 (HZ‘ m_1> milnm; (16)

i>3

st Bl o By s 3
Ki—1 ~— Ki
q1 q2
4 22
K — Zz Ki /4.327
™= Kj.
j=i

Taking the derivatives of the objective U with respect to the budget allocations
Kk gives

U KX . om m
A . — 1n<7r2>+qun LI 7;,2+1 7
0Kk (K =3, ki) Ty WSk R Tl (k) Tt

™

where In (%) >0, In-" >0, and In (7},’;%) and so gTUk > 0Vk.

T
2 741 k1

Moreover, if % = £ then defining a new problem with n — 1 schools, and

capacities ¢ and budget &

q; ifj<i—1 Kj ifj<i—1
G=N¢+q ifj=i—1,K = k1+nr ifj=i—-1

qj+1 lf]>Z—1 Rj+1 1f]>7,—1
leads to a problem with the same objective function, since

<Qi—1 _ qz’—2> T Inm g + (qz _ Ch'—l) mInm + (Qi+1 4%

Ri—1 Ri—2 Kq Ri—1 Ri41 )

G118 _ Gi-2 Qit1  Gi-1 1 Gi
- - mi—1nmi_1 +0+ - Tit1 In i,
(Hi—l + K “i—2) e (liz'-s-l PRI

)Wz‘+1hl7fi+1

Hence if there exists ¢ for which g—i =+ %, we may take ¢ to be minimal such
that this occurs, decrease each of kq,..., k;_1 proportionally so that ki + --- + K;_1
decreases by £ and increase k; by € and increase the resulting value of the objective.
It follows that the objective is maximized when % = Z—i = - = I ie when

the money assigned to each school is proportional to the number of seats at the
school. ]
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E.2 Design of TTC Priorities

We demonstrate how to calculate the TTC cutoffs for the two economies in Figure 8
by using the TTC paths and trade balance equations.

Consider the economy &£, where the top priority students have ranks uniformly
distributed in [m,1)°. If & = (21,21) is on the diagonal, then HY (z) = % for all

1
i,7 € {1,2}, and so there is a unique valid direction d (¥) = [ ? ] Moreover,

2
v(t) = (4, L) satisfies U0 = d (v (t)) for all ¢ and hence Theorem 2 implies that
v (t) = (%,%) is the unique TTC path. The cutoff points satisfy p; = pj = p? =p3 =p
for some constant p, and (by symmetry) the capacity equations D! (p) = D? (p) = ¢
for p = (p,p). Since D' (p) + D?(p) = 1 — p?, it follows that 1 — p* = 2¢, or
p = /1 —2¢. The cutoff points p§ = /1T — 2¢ give the unique TTC allocation.
Consider now the economy &, where top priority students have ranks uniformly

distributed in the 7 x 7 square (1 — 7, 1] x (m, m + 7| for some small 7, where 7 <
(2m—1)(1—m)
2m '

Ifzisin (1 — 7, 1]x[m + 7, 1] then HY (z) =1(m+(1-m)=2) Vj and Hj (z) =

i (17m)2

—1
2 /j, so there is a unique valid direction d (z) = —— [ . ] Ifzisin
(m,1 —7] x (m,1] then H/ (z) = % for all 7, j and there is a unique valid direction

2

(
_1 .
d(z) = [ 2 ] Finally, if 2 = (21,25) is in [0,1] \ (m,1]* then H} (z) = iz, and
2

H) = 1z for all j and there is a unique valid direction d (z) = xl}rm —n ] :
. . -1
Hence the TTC path 7 () has gradient proportional to [ (1-m)? ] from
1 2 s m
the point (1,1) to the point (1 —r1l—7— %), to 2| from the point
T2
2 2 -1 - (1=m)

<1 -7l —7— %) to the point <m + %, m) and to 1’”2 from
the point (m - (1;;”)2 , m> to the cutoff point (p,p).

We find that (1_9, ]_)) = (\/(1 —2q) (1_2’?”—452’”2), \/(1 —2q) %) by observing

that % (1 —p- 1_9) = D! ((}_9, ;1_3)) = ¢ and that (]_9, ]_9) lies on the line passing through
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(1-m)? . . 1
m + ,m | with gradient

1-m)2 *

We now show that the economy &€ is extremal, i.e. if economy &' is given by
perturbing the relative ranks of students in {9 |0 >m Vc}, then the TTC cutoffs
for £ are given by pl = p? = z, p} = p2 = y where v < p = ./% and
y>p= V(1 —2¢) (1 — 2m + 2m?). (By symmetry, it follows that p<z,y<p)

Let 7 and 4/ be the TTC paths for £ and &' respectively. Let (Zpoung,m) be
the point where the TTC path 4/ first hits the boundary of the box [m, 1] x [m,1]
containing all the highly ranked students. We remark that the TTC path + for &

1 —Tbound

Thound+M

has gradient from (Zpouna, m) to the TTC cutoffs (z,y).

-m

Consider the aggregate trade balance equations for students assigned before the
TTC path reaches (Zpouna, m). They stipulate that the measure of students in [0, m] x
[m, 1] who prefer school 1 is at most the measure of students who are either perturbed
or in [Tpound, 1] X [0,m], and who prefer school 2. This means that %m (1—-m) <
%((1 — m)2 +m(1— xbmmd)), OT Tpound < M + % It follows that ~' hits the
boundary of the box at a point that is to the left of where % hits the boundary box,
and hence the path 4’ lies above the path 7.5! It follows that < p and y > 1_73‘] =p.

E.3 Comparing Top Trading Cycles and Deferred Accep-

tance

In this section, we derive the expressions for the TTC and DA cutoffs given in Section
4.3.

Consider the TTC cutoffs for the neighborhood priority setting. We prove by
induction on ¢ that pﬁ =1- g—fl for all ¢, j such that j7 > /.

Base case: (= 1.

For each school 7, there are measure ¢ of students whose first choice school is i,

aq of whom have priority at ¢ and % of whom have priority at school j, for all
J# i
. . . . _ L _ L _ L
The TTC path is given by the diagonal, v (t) = (1 Fl— 0l \/ﬁ> At
the point v (¢) = (z,x,...,z) (where z > “=1) a fraction n (1 — z) of students from

each neighborhood have been assigned. Since the same proportion of students have

each school as their top choice, this means that the quantity of students assigned to

51That is, for each 2/, if (2’,y’) lies on 4/ and (2/,7) lies on 7, then 3’ > 7.
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each school i is n (1 — z) q. Hence the cutoffs are given by considering school 1, which
has the smallest capacity, and setting the quantity assigned to school 1 equal to its

capacity ¢;. It follows that p} = z* for all j, where n (1 — 2*) ¢ = ¢, which yields

41 .
p}:l—@ for all j.

Inductive step.

Suppose we know that the cutoffs {p;}ij.iq satisfy pé» =1- %}. We show by
induction that the (¢4 1)th set of cutoffs {p;*' }j>e are given by pit' =1 — o

The TTC path is given by the diagonal when restricted to the last n — ¢ coordi-

nates,y(t(f)th) - <p%,p§,...,p§,p§—ﬁ,pﬁ—ﬁ,...,pf—ﬁ).

Consider a neighborhood i. If i > ¢, at the point v (t) = (p,p3,....p5z, 2, ... @)
(where z > 2=1) a fraction n (pj — z) of (all previously assigned and unassigned)
students from neighborhood i have been assigned in round /+ 1. If 7 < ¢, no students
from neighborhood i have been assigned in round ¢ + 1.

Consider the set of students S who live in one of the neighborhoods ¢ + 1,¢ +
2,...,n. These are the only students who have priority at one of the remaining
schools. Moreover, the same proportion of these students have each remaining school
as their top choice out of the remaining schools. This means that for any ¢ > ¢, the
quantity of students assigned to school 7 in round ¢ + 1 by time ¢ is a ﬁ fraction
of the total number of students assigned in round ¢ + 1 by time ¢, and is given
by-L (n —0) (p; — ) ng = n (p; — =) . Hence the cutoffs are given by considering
school ¢ + 1, which has the smallest residual, and setting the quantity assigned to

school ¢ + 1 equal to its residual capacity g1 — q¢. It follows that pﬁ“ = z* for all
7 > £ where n (pg — x*) q = Qe+1 — qu, Which yields
pﬁ“ =p§— Qe+1 — Qe :1_2_ Qe+1 — Qe _1_ de+1 for all j > £,

ng ngq nq ng

This completes the proof that the TTC cutoffs are given by pé- =p =1- % for
all 1 < 7.

Now consider the DA cutoffs. We show that the cutoffs p; = 1 — g—; satisfy the
supply-demand equations. We first remark that the cutoff at school ¢ is higher than
all the ranks of students without priority at school i, p; > ”T_l Since every student

has priority at exactly one school, this means that every student is either above the
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cutoff for exactly one school and is assigned to that school, or is below all the cutoffs
and remains unassigned. Hence there are ng (1 — p;) = ¢; students assigned to school

1 for all 7, and the supply-demand equations are satisfied.

E.4 Comparing Top Trading Cycles and Clinch and Trade

Y5
0 /"
il
| N
. N\
N
11 1 1
25 .3 .36 m 1-7

Figure 16: FEconomy & used in the proof of Proposition 9. The black borders partition the space of
students into four regions. The density of students is zero on white areas, and constant on each of
the shaded areas within a bordered region. In each of the four regions, the total measure of students
within is equal to the total area (white and shaded) within the borders of the region.

Proof of Proposition 9. Morrill (2015b) provides an example where C&T produces
fewer blocking pairs than TTC. Both mechanisms give the same assignment for the
symmetric economy in the beginning of Example 5. It remains to construct an
economy & for which C&T produces more blocking pairs than TTC. Let economy
€ be defined as in Section E.2, that is, by taking an economy & with capacities
¢1 = q2 = q = 0.455 where students are equally likely to prefer each school and
student priorities are uniformly distributed on [0, 1] independently for each school
and independently of preferences, and changing the ranks of top priority students

(those with rank ¢, 79 > m = 0.6) so that they have ranks uniformly distributed in
(2m—1)(1-m)

the 7 x 7 square (1 — 7, 1] x (m, m + 7] for some 7 < ST

Recall that when running TTC on the economy &€ the cutoffs are given by p' =
(1_7,1_9), where p = \/(1 — ZQ)% and p = \/(1 —2q) 1’2’7’;—32”# The economy
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&, is constructed by taking the economy & and redistributing school 2 rank among
students with rg <p=w 0.25 so that those with rf > P ~ 0.36 have higher school
2 rank.”® The C&T assignment for & is given by p} = p2 = 0.3, while TTC gives
pi =P ~ 0.36 and p3 = p ~ 0.25 (and under both p} = p?, p} = p3). Under TTC
unmatched students will form blocking pairs only with school 2, while under C&T
all unmatched students will form a blocking pair with either school. See Figure 16

for an illustration. O

F Proofs for Appendix A

F.1 Derivation of Marginal Trade Balance Equations

In this section, we show that the marginal trade balance equations (2) hold,

Do) Hi(x) =) () - He (x).

aeC aeC

The idea is that the measure of students who trade into a school ¢ must be equal to
the measure of students who trade out of c.

In particular, suppose that at some time 7 the TTC algorithm has assigned exactly
the set of students with rank better than x = 7 (7), and the set of available schools
is C. Consider the incremental step of a TTC path v from (7) = x over € units
of time. The process of cycle clearing imposes that for any school ¢ € C', the total
amount of seats offered by school ¢ from time 7 to 7 + € is equal to the amount of
students assigned to ¢ plus the amount of seats that were offered but not claimed or
traded by the student it was over to over that same time period. In the continuum
model the set of seats offered but not claimed or traded is of n-measure 0.>> Hence

the set of students assigned to school ¢ from time 7 to 7 + € has the same measure

528pecifically, select ¢; < f;. Among students with r§ < p and 7¢ > p the school 2 rank is
distributed uniformly in the range [f2,p]. Among students with 7§ < p and r{ < p the school 2 rank
is distributed uniformly in the range [0, ¢;]. Within each range r{ and r§are still independent. See
Figure 16 for an illustration.

53 A student can have a seat that is offered but not claimed or traded in one of two ways. The first
is the seat is offered at time 7 and not yet claimed or traded. The second is that the student that
got offered two or more seats at the same time 7/ < 7 (and was assigned through a trade involving
only one seat). Both of these sets of students are of n-measure 0 under our assumptions.
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as the set of students who were offered a seat at school ¢ in that time,

n({0 €01 |1 cly(r+e),v(r)})
:77({0 €0 |E|7J €[r,7+¢€ st Tg :70(7-’) and r? §7(7/>})’

or more compactly,

n (T (vilrm+¢€) =n(Te (v [r,m+€). (17)

We now prove that the marginal trade balance equations follow from equation
(17). Following the notation in Appendix A.2, for b,c € C, z € [0,1]%a € R we
define the set

Tbclc (z,a) = {0 € Q¢ | 1% ¢ [z — ae’,z)} .

We may think of T} © (x, ) as the set of the next « students on school b’s priority
list who are unassigned when ~ (7) = x, and want school c¢. We remark that the sets
used in the definition of the Hg'c (z) are precisely the sets T}, Uz, ).

We can use the sets T, © (z,a) to approximate the expressions in equation (17)
involving T, (7;-) and T4 (v; ).

Lemma 10. Let v (1) = x and for alle > 0 let § (€) = v (1) —~(7+¢€). For sufficiently
small €, during the interval [T, T + €], the set of students who were assigned to school
c s
T (vifrr+ ) = U Ty (2.6 ()
b

and the set of students who were offered a seat at school c is

Te(yi[r7+€)) =T8¢ (:c =) b (e) e, o (@) UA

c'#c
for some small set A C ©. Further, it holds that hH(l)% -n(A) = 0, and for any
T—
c # d,d # d € C we have lin%% . 77<Tcd|c (x, e (e))ﬂTj'C (2, 0u (e))) = 0 and
T—r
T4 (2,8, (7)) N T (2,6, (€)) = ¢

Proof. The first two equations are easily verified, and the fact that the last inter-

54We use the notation [z,7) = {z € R" | z, < 2; < T; Vi } for 2,7 € R", and e € RC is a vector
whose c-th coordinate is equal to 1 and all other coordinates are 0.
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section is empty is also easy to verify. To show the bound on the measure of A,
we observe that it is contained in the set |, Ug (Tcdlo(x, de(e)) N Tj‘c(x, O (e))), S0

it suffices to show that lin%% - (Tf'c (x,0.(€)) N Tj'c (2, 0w (e))> = 0. This follows
T—>
from the fact that the density defining 7 is upper bounded by M, so

n (T2 (2,60 () N T (2,60 (€))) < M elr) = e (r + )| s (1) = 7 (7 + ).

Since for all schools ¢ the function 7, is continuous and has bounded derivative, it is

also Lipschitz continuous, so
1 1 d|C d|C
“n(A) < 2 (Tc (0. () N TH (2,6, (e))) < ML.Lye
T T

for some Lipschitz constants L. and L. and the lemma follows. O

We now now ready to take limits and verify that equation (17) implies that
the marginal trade balance equations hold. Let us divide equation (17) by . (¢) =
Ye (T) — Yo (T + €) and take the limit as € — 0. Then on the left hand side we obtain

1
c|C (.
i 5" (T (i [, 7+ GD)
1 c\c
21_1}(1) 5 (6 77 (UT (z, 0 (€ ))) (Lemma 10)
. 1 (Il (1) = 7(r + &)l0)*
= lim (z,0p(€))) + O =
=0 | £ 3. (€) ( b ))) ( 5e ()
(as density is bounded, v < M)
= lim - ! 1 (Tc‘c (z,9 (e))) (v Lipschitz continuous)
_€_>0 (Sc (6) ] b » 0b Y p
LbeC
T i 5b(€)_ 1 elc | ,.0 _ b
_g% l;&(e) 51;(6)77({66@ | 77 € [z — dp (e) e,x)})
Z 2%(7) | ClC () (by definition of 6 and H)
beC Ve (T

as required. Similarly, on the right hand side we obtain
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lim

e—0 6, (€)

= lim
e—0

= lim
e—0

= lim
e—0

= Z H¢(z) (by definition of § and H)

acC

as required. This completes the proof.

1

[ 1
Eza(@”

acC ¢

n(Te (v (1,7 +€l)

Tele (f — > der(e) e, 8e ()

c'#c

c'#c

Tl (f = e () e be (e)

{9e@ﬂ7weeu5@yx
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|
|

(I (7 +©) = 1(7)lle)
) o ( 5 (0

i )] (Lemma 10)

] (v is Lipschitz continuous)
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